

Into Eiffel
This paper gives you a short introduction to Eiffel. The object is to draw your atten-
tion to the salient features of Eiffel; from this framework you can build up a good
knowledge of Eiffel from many other excellent sources. You can also find introduc-
tion papers that give more detail at http://www.eiffel.com/ and http://www.elj.com/.
The many books on Eiffel give even more detail, up to Eiffel: The Language, which
is the complete language definition. Object-oriented Software Construction is the
classic text on object-oriented programming; it explains the philosophy of OO and
introduces Eiffel as its notation. Details about these books and others can also be
found at http://www.eiffel.com/.

Classes

The basic construct in Eiffel is the class. In fact there is no other construct of note.
So immediately we have a language which is fundamentally simpler than C/C++
and Object Pascal.

A class represents entities, the attributes of those entities and the operations
that those entities can perform. This gives you a fundamental mechanism for
project organisation because any application is organized into a set of interacting
classes.
1

2 Into Eiffel

Classes represent real world entities in a model, but can represent more artifi-
cial artifacts that occur only in computer programs. An example of an Eiffel class
is:

class CAR

end

A class represents all objects of that type. For instance, in the real world we have
one concept of CAR, but there are many instances of CARs. We should be careful to
distinguish between a class as a conceptual design pattern of entities and objects
that represent the entities themselves.

Libraries

One of the greatest promises of OO is reuse; that is, you should not have to rewrite
many basic concepts that frequently appear. Classes that frequently appear are orga-
nized into libraries, such as EiffelBase for many basic types such as INTEGER,
REAL, STRING, etc. Many collections are also in the base library such as LISTs and
ARRAYs, with many others.

Not only do you have the EiffelBase (sometimes called Kernel and ELKS)
library, but many other libraries to interface to databases, CORBA, etc. Also on the
Macintosh with EiffelS for CodeWarrior, you get the MacOs Toolbox Eiffel
Library, MOTEL, which is a full OO interface to the MacOS. MOTEL can simply
be used as an Eiffel API to MacOS, but with a single call, it becomes a full event-
driven application framework like MacApp and PowerPlant, making application
development even simpler. You will find MOTEL cleaner and easier to understand
and find what you want than any framework written in C++, and it is the consis-
tency of the Eiffel language that enables this. MOTEL also follows uniform naming
patterns that many other Eiffel libraries vendors have adopted. This means that the
programmer has less to remember and has to consult API references less frequently.

Libraries are not defined as part of the Eiffel language—they are simply collec-
tions of related classes.

Features 3

Features

Each class has a set of features that represent the attributes and operations of a
class. Operations on an object typically alter the state of the object, that is, will
change the values of one or more of its attributes. In Eiffel, such operations are
known as procedures. Fields in an object can be changed only by routines in the
object.

Functions are computations that return an answer to a query about the state of
an object, but do not change the state of an object (although this is by convention,
rather than being enforced in Eiffel). Computational functions and procedures are
together known as routines. Functions, however, have more in common with read-
ing an attribute field or even constant than with procedures. When performing a
query, it does not matter to the querier whether the answer is retrieved from a pre-
computed field of the object or by a computation that is done at that moment. Eiffel
needs no low-level call operator such as ‘()’ to invoke functions. This makes Eiffel
programs very flexible because functions with no arguments can be redefined as
fields or constants.

For example, the attribute speed of a CAR object could either be stored in a
field or computed from other inputs or fields stored in the object. (Indeed reading a
field involves a computation of retrieving the contents of that item; this computa-
tion is in fact hidden to the programmer, which leads many to think that field access
and functions are different, but really field or constant access is functional access.
This is called the Principle of Uniform Access and makes software very flexible.)

Attributes themselves can be fields or constants. A field sets aside space within
each created object where the value is stored. A constant is compiled into the code,
and does not use up space in an object.

To summarise: routines are either procedures or functions; attributes can be
fields, constants or functions. These four entities, procedures, functions, fields and
constants are collectively known as features.

An example of a class with features is:

class
CAR

feature
colour: COLOUR -- a field

4 Into Eiffel

velocity: INTEGER is -- a function
do

Result := speed
end

wheels: INTEGER is 4 -- a constant

speed: INTEGER

stop is -- a procedure
do

speed := 0
end

end -- CAR

Note that the features of a class are introduced by the keyword feature. A number
of other points can be seen about Eiffel style and syntax. Comments are introduced
by -- (like an em–dash, —). This indicates a comment to the end of line. Grouped
entities are terminated by the keyword end. Eiffel has no begin keyword since it is
superfluous. Also superfluous are semicolons, but these may optionally be placed
between constructs. Eiffel has a clean and modern syntax making programs much
easier to read.

The features speed and velocity can be interchanged as queries. In fact, this is
an artificial example to show only the differences and similarities between func-
tions and fields.

In Eiffel style, keywords are shown in bold and user named entities in italics.
Class names are given in uppercase, which follows the mathematical typographical
convention for types. Eiffel is not case sensitive, so it is up to the programmer to
follow style conventions. Entity names made up of more than one word separate the
constituent words with underscore ‘_’, for example SPEEDY_CAR.

Note also in your editor, you will not have to enter words in bold and italics—
these are done by formatting software.

C and C++ programmers might be wondering how to make features public,
protected and private. With Eiffel you have far more control; any set of features
introduced by the feature keyword can be exported to other specific classes. Thus
you have the possibility of many shades of grey between public and private. You

Inheritance 5

might want a feature to be public to some specific classes, but private to others. This
also covers the friend mechanism of C++ since a special implementation relation-
ship can be specified between certain classes.

In Eiffel there are two specific classes ANY and NONE. ANY is at the top of the
inheritance hierarchy and exporting to ANY is equivalent to public. ANY is automat-
ically inherited by all classes. It is like Object in Java, and TObject in MacApp.
NONE is at the bottom of the inheritance hierarchy and exporting to NONE is the
equivalent of protected in C++. There is no strict equivalent of private, as Eiffel
believes it is not sensible to restrict visibility in subclasses. We will not look at the
specifics of export since this is covered in longer tutorials and this is meant to be a
short tutorial.

Inheritance

In order to build new classes out of existing classes and to reuse features already
defined in those classes, you use inheritance. In Eiffel, you use the inheritance
clause as follows:

deferred class
VEHICLE

feature
velocity: INTEGER is -- a function

do
Result := speed

end

wheels: INTEGER is
deferred
end

speed: INTEGER

stop is -- a procedure
deferred
end

end -- VEHICLE

6 Into Eiffel

class
CAR

inherit
VEHICLE

feature
colour: COLOUR -- a field

wheels: INTEGER is 4 -- a constant

speed: INTEGER

stop is -- a procedure
do

speed := 0
end

end -- CAR

This is a very simple example of inheritance—it only shows single inheritance. Eif-
fel has multiple inheritance. As those who have used a language with multiple
inheritance know, if two features with the same name are inherited from two differ-
ent classes, a clash occurs. Eiffel solves this by having a rename clause that allows
you to rename one or both of the features to remove the clash. This is different to
the scope resolution operator :: of C++, where disambiguation must be done on
every reference to the clashing inherited members.

The example also does not show how to redefine a feature. If you wish to rede-
fine a feature, you must put a redefine clause in your inheritance clause. The exam-
ple also shows deferred features. You do not have to put a redefine clause in order to
give these a definition in a subclass. Defining a deferred feature is called effecting
that feature. Our example shows two deferred features, stop and wheels. Note that
stop is effected as a routine, whereas wheels is effected as a constant.

Apart from rename and redefine clauses in the inheritance clause, you can
change the export status of inherited features with the export clause (you should
not use the export clause to restrict access that was previously granted in a parent—
that would be mean, but it has some negative theoretical type considerations). Two
other clauses that give complete control over inheritance are the undefine and
select clauses. Thus, when inheriting any class, you can control the inheritance with
the five subclauses: rename, export, undefine, redefine and select.

Genericity 7

Genericity

Inheritance is one of the fundamental mechanisms for reuse—so is genericity.
Genericity is also important in making programs type safe without resorting to type
casts. Java does not have genericity, and many type casts are needed to make up for
this deficiency—this is burdensome to the programmer. C++ has genericity in the
form of template classes. If you have had problems understanding C++ templates—
don’t worry—Eiffel’s generic syntax is much easier and more powerful because it
also allows generic parameters to be constrained; this is known as constrained
genericity (also known as bounded- and F-bounded polymorphism).

In order to use genericity you create a generic class with formal generic param-
eters. These are generic types where the type is left open to be instantiated by actual
generic types. Generics are most useful in collection classes. For example, LISTs
can store INTEGERs, ANIMALs, and other objects. Thus the LIST class is declared
as:

class LIST [T]
...

end

The actual lists are instantiated as:

il: LIST [INTEGER] -- LIST of INTEGERs
animal_list: LIST [ANIMAL] -- LIST of ANIMALs
list_list: LIST [LIST [INTEGER]] -- LIST of LISTs of INTEGERs

A generic class can also restrict the kinds of actual parameters. For example:

class SHELF [ITEM -> SHELF_ITEM]
...

end

Here any actual generic type must be a SHELF_ITEM in order to instantiate a valid
shelf.

The key point to remember about generics is that they allow you to write gen-
eral algorithmic patterns that apply to a variety of types. The variety of types can be
restricted with constrained genericity, where the genericity is known to work only
on certain types. Where the generic types are not constrained, the algorithmic pat-
tern is universally applicable.

8 Into Eiffel
Object Creation and Garbage Collection

Objects are created with the special !! instruction. An example looks as follows:

c: C

!! c.make

or

!D! c.make

In the first example, an object of type C is created and attached to the reference c.
(Remember Eiffel is case insensitive, but the name c here is used for a variable and
C for a class type, but there is no name clash.) In the second example, an object of
type D, where D conforms to C (that is D is a subclass of C), is created and attached
to c. The other point to note is that, if you have a creation routine declared for the
class, the creation routine must be called. In the examples it is the make routine.
Creation routines are a bit like constructors in C++ and Java. More than one can be
declared, but unlike C++ and Java constructors, you can declare several creation
routines with the same signature.

Also different to C++ and Java is the fact that creation routines can be called as
normal routines. That is so long as the creation routines are exported as normal rou-
tines. The export status as a creation routine and a normal routine can be different,
so, if you really don’t want your creation routines called as normal routines, you
can prevent this.

Note that the !! syntax is somewhat cryptic, and a recent change to the language
has changed this for a create command keyword (as it was in versions of the lan-
guage prior to version 3). (This change is now in ISE Eiffel, and will soon be in
EiffelS for CodeWarrior).

Eiffel has no delete operator. This is because, as with Java, Eiffel is garbage
collected. Garbage collection is known to completely cure the programming ills of
dangling pointers and memory leaks. This greatly simplifies the programming
effort by removing one of the largest bookkeeping headaches for programmers.
Garbage collection has also proven to be very efficient in modern implementations.

Other Instructions 9
Other Instructions

In order to write routines, you use a sequence of instructions. As a point of termi-
nology, Eiffel calls these instructions rather than statements, as in other languages.
Eiffel provides the usual kinds of instructions: routine call, assignment, if then
elseif ... else, loop, object creation and inspect (case or switch). These are just about
the only instructions that Eiffel provides. Much of the power of Eiffel is provided in
the libraries, which build upon the basic features of the language.

Class variables

If you have used Smalltalk, C++, or Java, you will be wondering how to create class
variables; that is variables which do not have one copy per object, but one per class
of objects. The Eiffel equivalent for doing this is once routines. These are covered
by the many other tutorials and books on Eiffel.

Design by Contract

One of the most significant aspects of Eiffel is that it is not only a language with
which you can write executable software, but it is a language that embodies many
design concepts. Thus you can use the same language for design and implementa-
tion. The notion of design by contract is a formal way to divide up the work
between a routine and its caller, so that all the work is done and it is not repeated,
which would cause performance problems.

Not only is design by contract a formal way of designing interfaces, but a good
way to document interfaces. Often routine signatures are not enough to show how
to call a routine—contract information adds the extra details.

The most noticeable language features are the pre and postconditions of rou-
tines in the requires and ensures clauses. An example is:

square_root (n: REAL): REAL is
require

n >= 0
do

Result := ... sqrt calculation

10 Into Eiffel
ensure
n = Result * Result

end -- square_root

Here the requires clause tells the caller that they are responsible for checking that
the argument passed is nonnegative. The ensure clause tells us some properties of
the calculation and the conditions we expect to hold after the routine is complete.
Not only do these clauses document what is expected of the caller and of the routine
itself, but these are checked at run time to make sure the software is operating cor-
rectly (as long as assertion monitoring is turned on—it can be turned off once you
are confident that the software is working correctly).

If the assertion checks fail, an exception is raised. If the require clause fails, an
exception is raised in the caller. If an ensure clause fails, an exception is raised in
the routine itself. Exceptions may be caught with a rescue clause and if able to be
corrected, the routine can be restarted with the retry instruction:

square_root (n: REAL): REAL is
require

n >= 0
do

Result := ... sqrt calculation
ensure

n = Result * Result
rescue

... clean up instructions

... if cleanup successful...
retry

end -- square_root

If a retry instruction is not executed in the body of the rescue clause, the routine
fails, and a exception is raised in the caller.

Not only can preconditions check parameters, but they can also check the
object state to ensure that the object has been set up correctly prior to a routine call.
For instance, consider a WINDOW object. Before being able to move the WINDOW,
the window must be open, so a requirement of the move routine would be that the
window is open.

Eiffel does not have... 11
Note that this gives a level of documentation that Mac programmers have
always wanted—what order should things be done in.

Another aspect of design by contract is the class invariant. The class invariant
always makes sure that objects are in a valid state. This is closely related to creation
routines because creation routines must initialise the state of an object so that the
class invariant is satisfied. For normal routines to execute correctly, not only must
their requires clause be met, but the class invariant must also be satisfied. A normal
routine must also leave an object in a valid state, so the class invariant is always
checked when a routine completes. (In fact, it is a little more complicated than this
in the case where a chain of routines are called on the same object, but we needn’t
concern ourselves with that here.)

As documentation a class invariant precisely captures the properties of a class
and, therefore, is a very important part of class design.

Eiffel does not have...

Gotos and global variables. Gotos are not needed because the Eiffel style is to write
small routines. Global variables are a sign of poor structuring—all Eiffel code must
be structured in classes. Once routines, which have already been mentioned, are the
concept needed to do away with global variables since once routines give con-
trolled access to shared information. Eiffel also does not need type casts to make up
for a flawed type system and, like Java, does not have pointers with their associated
problems.

The Inner (outside) world

In order to interface to existing software or low-level (inner) software, Eiffel pro-
vides external routines. These too can be guarded with pre- and postconditions.
The only difference between a normal routine and an external routine is that the do
section is replaced by the external keyword and some information on how to link to
the external software, but has no instructions.

The MOTEL library makes extensive use of the external feature to interface to
the MacOS Toolbox. MOTEL has been designed so that the MacOS Toolbox has a

12 Into Eiffel
object-oriented wrapping and so the MOTEL interface is more organized than just
the raw Toolbox API.

If you need to write your own C routines either for performance or direct access
to hardware (which you normally should not do since you should call the toolbox),
you will call these via Eiffel’s external routines.

Where to now...

That’s about all there is to Eiffel the language. The rest is up to you by using good
design of software that Eiffel will help you with, more than any other language, and
intelligent use of the Eiffel libraries such as EiffelBase and MOTEL that give you
the features that other languages have built in. If you are writing Eiffel on the Mac-
intosh, a very good place to start is to study the MOTEL library since this is essen-
tial to access the power of the Macintosh. MOTEL shows all the advanced features
of Eiffel and how the interface to MacOS can be organized much better than previ-
ously possible—such are the possibilities when using Eiffel to design, write and
organize your software.

EiffelS for Macintosh CodeWarrior and MOTEL are available from http://
www.object-tools.com/.

	Into Eiffel
	Classes
	Libraries
	Features
	Inheritance
	Genericity
	Object Creation and Garbage Collection
	Other Instructions
	Class variables
	Design by Contract
	Eiffel does not have...
	The Inner (outside) world
	Where to now...

